Molecular-level thermodynamic and kinetic parameters for the self-assembly of apoferritin molecules into crystals.

نویسندگان

  • S T Yau
  • D N Petsev
  • B R Thomas
  • P G Vekilov
چکیده

The self-assembly of apoferritin molecules into crystals is a suitable model for protein crystallization and aggregation; these processes underlie several biological and biomedical phenomena, as well as for protein and virus self-assembly. We use the atomic force microscope in situ, during the crystallization of apoferritin to visualize and quantify at the molecular level the processes responsible for crystal growth. To evaluate the governing thermodynamic parameters, we image the configuration of the incorporation sites, "kinks", on the surface of a growing crystal. We show that the kinks are due to thermal fluctuations of the molecules at the crystal-solution interface. This allows evaluation of the free energy of the intermolecular bond phi=3.0 k(B)T=7.3 kJ/mol. The crystallization free energy, extracted from the protein solubility, is -42 kJ/mol. Published determinations of the second virial coefficient and the protein solubility between 0 and 40 degrees C revealed that the enthalpy of crystallization is close to zero. Analyses based on these three values suggest that the main component in the crystallization driving force is the entropy gain of the water molecules bound to the protein molecules in solution and released upon crystallization. Furthermore, monitoring the incorporation of individual molecules in to the kinks, we determine the characteristic frequency of attachment of individual molecules at one set of conditions. This allows a correlation between the mesoscopic kinetic coefficient for growth and the molecular-level thermodynamic and kinetic parameters determined here. We found that step growth velocity, scaled by the molecular size, equals the product of the kink density and attachment frequency, i.e. the latter pair are the molecular-level parameters for self-assembly of the molecules into crystals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological Applications of Isothermal Titration Calorimetry

     Most of the biological phenomena are influenced by intermolecular recognition and interaction. Thus, understanding the thermodynamics of biomacromolecule ligand interaction is a very interesting area in biochemistry and biotechnology. One of the most powerful techniques to obtain precise information about the energetics of (bio) molecules binding to other biological macromolecules is isoth...

متن کامل

Diamondoids and DNA Nanotechnologies

Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...

متن کامل

Quantum Chemical Investigations on C14C10-Branched-Chain Glucoside Isomers Towards Understanding Self-Assembly

Density Functional Theory (DFT) calculations have been carried out using a Polarizable Continuum Model (PCM) in an attempt to investigate the electro-molecular properties of branched-chain glucoside (C14C10-D-glucoside) isomers. The results showed that αconfiguration of pyranoside form is thermodynamically the most stable, while the solution should contain much more β...

متن کامل

Surface-Confined Molecular Self-Assembly

The design and fabrication of nanometer-sized entities of defined structure on the nanometer scale is a challenge hardly achievable by large-scale top-down procedures. In particular, alternative techniques are needed to structure surfaces at very small length scales. In nanotechnology the process of self-assembly has become a potent method which allows to vanquish these difficulties. Self-assem...

متن کامل

KINETIC STUDIES USING SEMI-EMPIRICAL SELF- CONSISTENT FIELD (SCF) MOLECULAR ORBITAL (MO) METHOD: PARTI. A MODIFIED NEGLECT OF DIATOMIC OVERLAP (MNDO) STUDY OF THE PYROLYSIS OF ETHYL VINYL ETHER

Using a computer code called MOPAC, an acronym for a general Molecular Orbital Package (Quantum Chemistry Programme Exchange (QCPE) Programme No. 455), the geometries and heats of formation of the reactant, the products and the trdnsition state were computed by the MNDO semi- empiricalself consistent field (SCF) method for the pyrolysis of ethyl vinyl ether. ((Force))calculation on the reac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 303 5  شماره 

صفحات  -

تاریخ انتشار 2000